All-electric Spintronics Created
A multidisciplinary team of UC researchers is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.
Their findings were recently published in the journal Nature Nanotechnology.
For decades, the transistors inside radios, televisions and other everyday electronic items have transmitted data by controlling the movement of the charge of an electron. Scientists have since discovered that transistors that function by controlling an electron's spin instead of its charge would use less energy, generate less heat and operate at higher speeds.
This has resulted in a new field of research - spin electronics or spintronics - that offers one of the most promising paradigms for the development of novel devices for use in the post-CMOS (complementary metal-oxide-semiconductor) era.
Until now, scientists have attempted to develop spin transistors by incorporating local ferromagnets into device architectures. This results in significant design complexities, especially in view of the rising demand for smaller and smaller transistors," says Philippe Debray, research professor in the Department of Physics in the McMicken College of Arts & Sciences.
"A far better and practical way to manipulate the orientation of an electron's spin would be by using purely electrical means, like the switching on and off of an electrical voltage. This will be spintronics without ferromagnetism or all-electric spintronics, the holy grail of semiconductor spintronics."
The team of researchers led by Debray and Professor Marc Cahay (Department of Electrical and Computer Engineering) is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.
"(Left) Scanning electron micrograph of the quantum point contact schematically illustrates unpolarized (spin up and spin down) electrons incident on the left coming out of the device spin-polarized with spin up. (Right) Spatial distribution of spin polarization in the quantum point contact constriction"
Source: University of Cincinnati
|