Science news
First Super-Earths Discovered Orbiting Sun-Like Stars

First Super-Earths Discovered Orbiting Sun-Like Stars

An international team of planet hunters has discovered as many as six low-mass planets around two nearby Sun-like stars, including two "super-Earths" with masses 5 and 7.5 times the mass of Earth.

The researchers, led by Steven Vogt of the University of California, Santa Cruz, and Paul Butler of the Carnegie Institution of Washington, said the two "super-Earths" are the first ones found around Sun-like stars.

"These detections indicate that low-mass planets are quite common around nearby stars. The discovery of potentially habitable nearby worlds may be just a few years away," said Vogt, a professor of astronomy and astrophysics at UCSC.

The team found the new planet systems by combining data gathered at the W. M. Keck Observatory in Hawaii and the Anglo-Australian Telescope (AAT) in New South Wales, Australia. Two papers describing the new planets have been accepted for publication in the Astrophysical Journal.

Three of the new planets orbit the bright star 61 Virginis, which can be seen with the naked eye under dark skies in the Spring constellation Virgo. Astronomers and astrobiologists have long been fascinated with this particular star, which is only 28 light-years away. Among hundreds of our nearest stellar neighbors, 61 Vir stands out as being the most nearly similar to the Sun in terms of age, mass, and other essential properties. Vogt and his collaborators have found that 61 Vir hosts at least three planets, with masses ranging from about 5 to 25 times the mass of Earth.

Recently, a separate team of astronomers used NASA's Spitzer Space Telescope to discover that 61 Vir also contains a thick ring of dust at a distance roughly twice as far from 61 Vir as Pluto is from our Sun. The dust is apparently created by collisions of comet-like bodies in the cold outer reaches of the system.

"Spitzer's detection of cold dust orbiting 61 Vir indicates that there's a real kinship between the Sun and 61 Vir," said Eugenio Rivera, a postdoctoral researcher at UCSC. Rivera computed an extensive set of numerical simulations to find that a habitable Earth-like world could easily exist in the as-yet unexplored region between the newly discovered planets and the outer dust disk.

Atmospheric Flow

"This image from a simulation of atmospheric flow shows temperature patterns on one of the newly discovered planets (61Virb), which is hot enough that it glows with its own thermal emission. A movie of the simulation is posted at the bottom of this story, showing global atmospheric flow for one full orbit of the planet around its star. (Credit: J. Langton, Principia College)"

Source: University of California



Science News
Biology
Brain
Health
Space
Technology


© Copyright ScienceNewsDen.Com and its licensors. All rights reserved.