Science news
Herschel Images Promise Bright Future For Astronomy

Herschel Images Promise Bright Future For Astronomy

Herschel has carried out the first test observations with all its instruments, with spectacular results. Galaxies, star-forming regions and dying stars comprised the telescopeís first targets.

The instruments provided spectacular data at their first attempt, finding water, carbon and revealing dozens of distant galaxies.

These observations show that Herschelís instruments are working beyond expectations. They promise a mission of rich discoveries for waiting astronomers.

SPIRE surprises with power

On 24 June, Herschelís Spectral and Photometric Imaging Receiver (SPIRE) was trained on two galaxies for its first look at the Universe. The galaxies showed up prominently, providing astronomers with their best images yet at these wavelengths, and revealing other more distant galaxies in the background of the images.

The pictures show galaxies M66 and M74 at a wavelength of 250 microns, longer than any previous infrared space observatory, but still the shortest SPIRE wavelength.

SPIRE is designed to look at star formation in our own Galaxy and in nearby galaxies. It will also search for star-forming galaxies in the very distant Universe. Because these galaxies are so far away, their light has taken a very long time to reach us, so by detecting them we are looking into the past and learning how and when galaxies like our own were formed.

Herschelís primary mirror is 3.5 m in diameter, nearly four times larger than any previous infrared space telescope. These images prove that it represents a giant leap forward in our ability to study celestial objects at far infrared wavelengths.

Spitzer primarily observes shorter infrared wavelengths than Herschel, so the two telescopes complement each other.

These observations were all made on the first day that SPIRE was used. They clearly show that the main scientific studies planned with the instrument are going to work extremely well.

Water-hunter HIFI scores at first try

Scientists used Herschelís Heterodyne Instrument for the Far-Infrared (HIFI) on 22 June to look for warm molecular gas heated by newborn massive stars in the DR21 star-forming region in Cygnus.

HIFI provided excellent data in two different observing modes, returning information on the composition of the region with unprecedented accuracy and resolution. It works by Ďzooming iní on specific wavelengths, revealing different spectral Ďlinesí that represent the fingerprints of atoms and molecules and even the physical conditions of the object observed. This makes it a powerful tool to study the role of gas and dust in the formation of stars and planets and the evolution of galaxies.

Using HIFI, scientists observed ionised carbon, carbon monoxide, and water in DR21. These different molecular lines add their pieces to a more complete understanding of what is happening.

The high quality of these first observations promises great new insights into the process of star formation.


"M74 (also known as NGC 628) is a face-on spiral galaxy located about 24 million light years from Earth in the constellation Pisces. The infrared SPIRE images trace the cold dust between the stars, clearly showing the galaxy's spiral structure. They also contain many faint dots that are actually distant galaxies. These galaxies contain dust that radiates at infrared wavelengths, but because they are much further away, we cannot see the structure in the galaxies. (Credit: ESA and the SPIRE consortium)"

Source: ESA

Science News

© Copyright ScienceNewsDen.Com and its licensors. All rights reserved.