Intense Heat Killed The Universe's Would-be Galaxies
Millions of would-be galaxies failed to develop after being exposed to intense heat from the first stars and black holes formed in the early Universe, according to new research.
Our Milky Way galaxy only survived because it was already immersed in a large clump of dark matter which trapped gases inside it, scientists led by Durham University's Institute for Computational Cosmology (ICC) found.
The researchers said that the early Milky Way, which had begun forming stars, held on to the raw gaseous material from which further stars would be made. This material would otherwise have been evaporated by the high temperatures generated by the "ignition" of the Universe about half-a-billion years after the Big Bang.
Tiny galaxies, inside small clumps of dark matter, were blasted away by the heat which reached approximate temperatures of between 20,000 and 100,000 degrees centigrade, the scientists, including experts at Japan's University of Tsukuba, said.
Dark matter is thought to make up 85 per cent of the Universe's mass and is believed to be one of the building blocks of galaxy formation.
Using computer simulations carried out by the international Virgo Consortium (which is led by Durham) the scientists examined why galaxies like the Milky Way have so few companion galaxies or satellites.
Astronomers have found a few dozen small satellites around the Milky Way, but the simulations revealed that hundreds of thousands of small clumps of dark matter should be orbiting our galaxy.
The scientists said the heat from the early stars and black holes rendered this dark matter barren and unable to support the development of satellite star systems.
The findings will be presented to The Unity of the Universe conference to be held at the Institute of Cosmology and Gravitation, at the University of Portsmouth on Wednesday, July 1. The work has been funded by the Science and Technology Facilities Council (STFC) and the Japanese Society for the Promotion of Science.
The simulations also form part of a new ICC movie – called Our Cosmic Origins – which combines ground-breaking simulations with observations of galaxies to track the evolution of the Milky Way over the 13-billion-year history of the Universe.
Joint lead investigator Professor Carlos Frenk, Director of the Institute for Computational Cosmology, at Durham University, said: "The validity of the standard model of our Universe hinges on finding a satisfactory explanation for why galaxies like the Milky Way have so few companions.
"The simulations show that hundreds of thousands of small dark matter clumps should be orbiting the Milky Way, but they didn't form galaxies.
"We can demonstrate that it was almost impossible for these potential galaxies to survive the extreme heat generated by the first stars and black holes.
"Gas around a young galaxy. (Credit: Jim Geach (Durham University) and Rob Crain (CAS/Swinburne University of Technology))"
Source: Durham University
|