Science news
Rare Meteorite Found In Australian Desert

Rare Meteorite Found In Australian Desert

Researchers have discovered an unusual kind of meteorite in the Western Australian desert and have uncovered where in the Solar System it came from, in a very rare finding published in the journal Science.

Meteorites are the only surviving physical record of the formation of our Solar System and by analysing them researchers can glean valuable information about the conditions that existed when the early Solar System was being formed.

However, information about where individual meteorites originated, and how they were moving around the Solar System prior to falling to Earth, is available for only a dozen of around 1100 documented meteorite falls over the past two hundred years.

Dr Phil Bland, the lead author of today's study from the Department of Earth Science and Engineering at Imperial College London, said: "We are incredibly excited about our new finding. Meteorites are the most analysed rocks on Earth but it's really rare for us to be able to tell where they came from.

Trying to interpret what happened in the early Solar System without knowing where meteorites are from is like trying to interpret the geology of Britain from random rocks dumped in your back yard."

The new meteorite, which is about the size of cricket ball, is the first to be retrieved since researchers from Imperial College London, Ondrejov Observatory in the Czech Republic, and the Western Australian Museum, set up a trial network of cameras in the Nullarbor Desert in Western Australia in 2006.

The researchers aim to use these cameras to find new meteorites, and work out where in the Solar System they came from, by tracking the fireballs that they form in the sky. The new meteorite was found on the first day of searching using the new network, by the first search expedition, within 100m of the predicted site of the fall. This is the first time a meteorite fall has been predicted using only the data from dedicated instruments.

The meteorite appears to have been following an unusual orbit, or path around the Sun, prior to falling to Earth in July 2007, according to the researchers' calculations.

The team believes that it started out as part of an asteroid in the innermost main asteroid belt between Mars and Jupiter. It then gradually evolved into an orbit around the Sun that was very similar to Earth's. The other meteorites that researchers have data for follow orbits that take them back, deep into the main asteroid belt.

Bunburra Rockhole

"This is Bunburra Rockhole, the meteorite, at the discovery site. (Credit: Imperial College London)"

Source: Imperial College London



Science News
Biology
Brain
Health
Space
Technology


© Copyright ScienceNewsDen.Com and its licensors. All rights reserved.