Scientists Decode Memory-Forming Brain Cell Conversations
The conversations neurons have as they form and recall memories have been decoded by Medical College of Georgia scientists.
The breakthrough in recognizing in real time the formation and recollection of a memory opens the door to objective, thorough memory studies and eventually better therapies, said Dr. Joe Tsien, neuroscientist and co-director of MCG's Brain & Behavior Discovery Institute. He is corresponding author on the study published Dec. 16 in PLoS ONE.
"It's a beginning, a first glimpse of a memory," Dr. Tsien said. "For the first time it gives us the ability to look at the brain dynamic and tell what kind of memory is formed, what are the components of the memory and how the memory is retrieved at the network level." The finding could help pinpoint at what stage memory formation is flawed and whether drugs are improving it.
For their studies, MCG scientists combined new technology and computational methods with century-old Pavlovian conditioning.
In the memory center of the brain, they used 128 electrodes capable of monitoring a handful of neurons each to simultaneously record the conversations of 200 to 300 neurons as mice learned to associate a certain tone with a mild foot shock 20 seconds later.
A computational algorithm translated the neuronal chatter into a discernable and dynamic activity pattern that provided scientists a trace or picture of what the memory looked like as it was formed and recalled.
"By listening to the neuronal activity we were able to decipher the real-time dynamic pattern and the meaning of those conversations so this is really satisfying," said Dr. Tsien, the Georgia Research Alliance Eminent Scholar in Cognitive and Systems Neurobiology.
The trace changed slightly each time it was recalled - likely as the mood or situation of the rodent changed - but still remained recognizable as a specific memory.
Source: Medical College of Georgia
|