Big Bang in the Protein Universe?
Researchers at Spain's Centre for Genomic Regulation (CRG) demonstrate evidence in support of the common ancestry of life, thanks to a new computational approach to study protein evolution.
The work, published in Nature, takes its inspiration from the astronomer Edwin Hubble and uses his approach to study protein evolution.
The extrapolation of Hubble's approach to proteins shows that proteins that share a common ancestor billions of years ago continue to diverge in their molecular composition.
The study reveals that protein evolution has not reached its limit and it is still continuing. At the same time, it provides us new information on why this evolution is so slow and conservative, showing that protein structures are more evolutionary plastic than previously thought.
Almost 100 years ago Edwin Hubble observed that distant galaxies are moving away from Earth faster than those that are closer. This relationship between distance and velocity is widely cited as evidence of the origin of the Universe from a Big Bang. Researchers at the Centre for Genomic Regulation used his approach to investigate the divergence between protein sequences.
"We wanted to know if the divergent evolution between proteins was still proceeding. Today, we can find proteins that are still similar after almost 3,5 billion years of evolution.
Our study showed that their divergence continues with these proteins becoming more and more different despite their incredible level of conservation," said Fyodor Kondrashov, principal investigator of the project and leader of the Evolutionary Genomics group at the CRG.
"Example of a 3-D structure of a protein (Myoglobin). (Credit: Courtesy of Wikimedia Commons)"
Source: Centre for Genomic Regulation
|