Science news
Cameras Of The Future

Cameras Of The Future

Scientists at the University of Oxford have developed a revolutionary way of capturing a high-resolution still image alongside very high-speed video - a new technology that is attractive for science, industry and consumer sectors alike.

By combining off-the-shelf technologies found in standard cameras and digital movie projectors they have successfully created a tool that will transform many forms of detailed scientific imaging and could provide access to high-speed video with high-resolution still images from the same camera at a price suitable for the consumer market.

This could have everyday applications for everything from CCTV to sports photography and is already attracting interest from the scientific imaging sector where the ability to capture very high quality still images that correspond exactly to very high speed video is extremely desirable and currently very expensive to achieve.

The technology has been patented by Isis Innovation, the University of Oxford's technology transfer office, which provided seed funding for this development and welcomes contact from industry partners to take the technology to market. The research is published February 14, 2010 in Nature Methods.

Dr Peter Kohl and his team study the human heart using sophisticated imaging and computer technologies. They have previously created an animated model of the heart, which allows one to view the heart from all angles and look at all layers of the organ, from the largest structures right down to the cellular level.

They do this by combining many different types of information about heart structure and function using powerful computers and advanced optical imaging tools. This requires a combination of speed and detail, which has been difficult to achieve using current photographic techniques.

Dr Kohl said: "Anyone who has ever tried to take photographs or video of a high-speed scene, like football or motor racing, even with a fairly decent digital SLR, will know that it's very difficult to get a sharp image because the movement causes blurring. We have the same problem in science, where we may miss really vital information like very rapid changes in intensity of light from fluorescent molecules that tell us about what is happening inside a cell. Having a massive 10 or 12 megapixel sensor, as many cameras now do, does absolutely nothing to improve this situation.

"Dr Gil Bub from my team then came up with a really great idea to bring together high-resolution still images and high-speed video footage, at the same time and on the same camera chip - 'the real motion picture'!

The sort of cameras researchers would normally need to get similar high-speed footage can set you back tens of thousands of pounds, but Dr Bub's invention does so at a fraction of this cost. This will be a great tool for us and the rest of the research community and could also be used in a number of other ways that are useful to industry and consumers."

Cameras of the Future

"The image shows a drop of milk falling into a beaker of water. A video was made at the same time, using the same camera, and represents the same image data. The still image has a 16 fold greater spatial resolution (see swirls of milk in the beaker), and it can be decoded into the video frames played in sequence to reveal the high-speed motion content. (Credit: Copyright Dr Gil Bub, University of Oxford)"

Source: Biotechnology and Biological Sciences Research Council



Science News
Biology
Brain
Health
Organic
Space
Technology


© Copyright ScienceNewsDen.Com and its licensors. All rights reserved.